Role of the Irr Protein in the Regulation of Iron Metabolism in Rhodobacter sphaeroides

نویسندگان

  • Verena Peuser
  • Bernhard Remes
  • Gabriele Klug
چکیده

In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong induction of genes for iron metabolism under iron starvation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein

IscR proteins are known as transcriptional regulators for Fe-S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the ...

متن کامل

Expression of the gltP gene of Escherichia coli in a glutamate transport-deficient mutant of Rhodobacter sphaeroides restores chemotaxis to glutamate.

Rhodobacter sphaeroides is chemotactic to glutamate and most other amino acids. In Escherichia coli, chemotaxis involves a membrane-bound sensor that either binds the amino acid directly or interacts with the binding protein loaded with the amino acid. In R. sphaeroides, chemotaxis is thought to require both the uptake and the metabolism of the amino acid. Glutamate is accumulated by the cells ...

متن کامل

Effects of the Cryptochrome CryB from Rhodobacter sphaeroides on Global Gene Expression in the Dark or Blue Light or in the Presence of Singlet Oxygen

Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis ge...

متن کامل

A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides.

Complementation of a mutant of Rhodobacter sphaeroides defective in photosynthetic CO2 reduction led to the identification of a gene which encodes a protein that is related to a class of sensor kinases involved in bacterial signal transduction. The nucleotide sequence and deduced amino acid sequence led to the finding that the gene which complemented the mutant is the regB (prrB) gene, previous...

متن کامل

CD-monitored redox titration of the Rieske Fe-S protein of Rhodobacter sphaeroides: pH dependence of the midpoint potential in isolated bc1 complex and in membranes.

The redox potential of the Rieske Fe-S protein has been investigated using circular dichroism (CD)-spectroscopy. The CD features characteristic of the purified bc1 complex and membranes of Rhodobacter sphaeroides were found in the region between 450 and 550 nm. The difference between reduced and oxidized CD-spectra shows a negative band at about 500 nm with a half of width 30 nm that correspond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012